ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭКОНОМИКИ И ОРГАНИЗАЦИИ ПРОМЫШЛЕННОГО ПРОИЗВОДСТВА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

АКТУАЛЬНЫЕ ВОПРОСЫ ЭКОНОМИКИ И СОЦИОЛОГИИ

Сборник статей по материалам XXI Осенней конференции молодых ученых в новосибирском Академгородке

Под редакцией к.э.н. Ю.М. Слепенковой

Новосибирск 2025 УДК: 338.2 JEL C61

М.Е. Лебедева, В.В. Шмат

Институт экономики и организации промышленного производства СО РАН Новосибирск, Россия

Анализ факторов устойчивого развития нефтегазохимической отрасли РФ с применением методов оптимизационного и когнитивного моделирования 1

Аннотация

Нефтегазохимический комплекс РФ является сложной экономической системой, которую можно рассматривать как совокупность отдельных взаимосвязанных подсистем (модели верхнего уровня, моделей отраслевого и регионального уровней, отдельных крупных предприятий и ключевых технологических звеньев). Для всестороннего комплексного анализа возможностей развития нефтегазохимического комплекса РФ используется инструментарий оптимизационного и когнитивного моделирования.

Ключевые слова: нефтегазохимический комплекс, баланс углеводородного сырья, отраслевое планирование, оптимизационное моделирование, когнитивное моделирование.

M.E. Lebedeva, V.V. Shmat

Institute of Economics and Industrial Engineering SB RAS, Novosibirsk, Russia

Analysis of Sustainable Development Factors of the Russian Petrochemical Industry Using Optimization and Cognitive Modeling Methods

Abstract

The petrochemical industry of the Russian Federation is a complex economic system comprising a set of interconnected subsystems - including top-level models, sectoral and regional models, major enterprises, and key technological components. Optimization and cognitive modeling tools are used in the article to conduct a comprehensive analysis of the industry's development potential.

Keywords: petrochemical industry, hydrocarbon processing balances, industry planning, optimization modeling, cognitive modeling.

Рациональное использование углеводородного сырья через увеличение глубины его переработки крайне необходимо для развития как российской экономики в целом, так и экономики регионов с развитой нефтегазохимической (НГХ) промышленностью. Деятельность нефтегазохимического комплекса характеризуется многовариантностью его развития, что выражается в широкой взаимозаменяемости видов используемого углеводородного сырья, множестве технологических вариантов переработки сырья, большой номенклатуре продукции и широкой взаимозаменяемости продуктов нефтегазохимии в потребляющих отраслях.

Важно обеспечить оптимальную конфигурацию отраслевых цепочек создания стоимости с учетом внутренних и внешних ограничений, стимулирующих факторов. Для решения этой задачи предлагается разработка комплекса экономико-математических моделей для имитации и оптимизации балансов углеводородного сырья. Подобные модели разрабатывались в ИЭОПП СО РАН в 1970—90-х гг. [Андреева и др, 1992; Старовойтов и др., 1982]. В рамках настоящего исследования учтены современные условия развития нефтегазохими-

¹ Работа выполнена по результатам исследований, проводимых в рамках плана НИР ИЭОПП СО РАН по Проекту 5.6.3.2. (FWZF-2024-0001) «Экспертно-аналитические, организационные и методические составляющие системы индикативного планирования научно-технологического и сбалансированного пространственного развития России при реализации крупных инвестиционных проектов».

ческого комплекса и выделены отдельные взаимосвязанные подсистемы модели (модели верхнего уровня, модели отраслевого и регионального уровней, отдельных крупных предприятий и ключевых технологических звеньев). Оптимизационная модель дает представление об отраслевом уровне, показывает структуру и оптимальное сочетание процессов внутри нефтегазового сектора.

Следующим этапом исследования стало дополнение комплекса оптимизационных моделей когнитивным анализом. Для изучения роли нефтегазового сектора, в частности нефтегазохимического комплекса, в общей экономической системе страны, на макроэкономическом уровне, построена когнитивная модель российской экономики с детализированным блоком нефтегазового сектора.

Когнитивный анализ широко используется в области экономики. Подробное описание методики когнитивного моделирования приводится в [Максимов, 2005]. Примеры использования данного инструментария в области экономических исследований представлены в [Лебедева, 2019, с. 202-205]. Построение когнитивной модели национальной экономики дает набор управляющих воздействий (с количественной оценкой интенсивности), которые требуются для достижения стратегических целей развития социально-экономической системы страны.

Полученные когнитивная и оптимизационная модели имеют согласующиеся результаты решений, что дает возможность применения данных методов в комбинации друг с другом (рисунок 1).

Рисунок 1. Схема комбинации инструментария когнитивного и оптимизационного моделирования

На основе вычислений модели оптимизации баланса углеводородного сырья верхнего, национального, уровня и имитации управляемого развития экономической системы страны в когнитивной модели, — получены согласующиеся результаты решений. Прогнозируемые к 2035 г. уровни группы факторов, общих для обоих моделей, в целом совпадают (отклонения до 17%). Так контрольными для согласования расчетов по моделям выступают следующие факторы: блок нефтегазового сектора («Отгружено товаров собственного производства по виду экономической деятельности «Добыча нефти и природного газа», «Производство кокса и нефтепродуктов», «Производство химических веществ»), блок реализации продукции («Внутренний спрос на продукцию химической промышленности», «Экспорт» и «Импорт (минеральные продукты, продукция химической промышленности, каучук)».

При помощи построенной когнитивной модели проведен анализ развития экономической системы в динамике, рассмотрены изменения в системе в результате приложения дополнительных управляющих воздействий. Путем решения обратной задачи управления,

определена совокупность управляющих воздействий, требуемых для достижения целевого результата (заданного уровня ВВП). В результате были получены прогнозные требуемые уровни факторов модели: «Инвестиции в основной капитал», «Затраты на инновационную деятельность организаций», «Уровень технологий», «Инфраструктура (валовая добавленная стоимость)», «Внутренний спрос на продукцию химической промышленности».

Данные факторы участвуют в системе ограничений оптимизационной модели и их изменение влияет на рассчитываемую оптимальную структуру производства нефтегазового сектора: распределение углеводородного сырья, выбор технологий переработки, объем производства нефтепродуктов и нефтегазохимии (мало-, средне-, крупнотоннажной), выбор рынков сбыта (внутренний, внешний), объем требуемого импорта химической продукции. Полученные оптимальные объемы производства химической продукции и нефтепродуктов, объем поставок на внутренний рынок, объем экспорта и импорта химической продукции — вновь могут использоваться для более точной настройки когнитивной модели.

Проведенное исследование может служить основой для дальнейшего развития комплекса моделей с последующим более строгим их согласованием на уровне объемов производства, каналов сбыта, инвестиций, дополнительных ограничений. При помощи разрабатываемого комплекса моделей нефтегазохимический комплекс отображается в разрезе разных уровней (страны, регионов, производств и т.д.), на основе чего можно исследовать реакцию системы в целом и отдельных ее элементов на прилагаемые к ней воздействия.

ЛИТЕРАТУРА

Андреева Л.А., Крюков В.А., Токарев А.Н., Шмат В.В. Согласование народнохозяйственных моделей с моделями энергетики // Моделирование взаимодействия многоотраслевых комплексов в системе народного хозяйства. – Новосибирск: Наука. Сиб. отд-е, 1992. – Гл. $3 \ 2.$ – с. 91-104.

Лебедева М.Е. Нечеткая логика в экономике — формирование нового направления // Идеи и идеалы. 2019. Т. 11. № 1. Ч. 1. С. 197-212. DOI: 10.17212/2075- 0862-2019-11.1.1-197-212.

Максимов В.И. Структурно-целевой анализ развития социально-экономических ситуаций // Проблемы управления. 2005. № 3. С. 30-38.

Старовойтов С.Н., Андреева Л.А., Гришина В.В. Разработка экономикоматематической модели оптимизации баланса углеводородного сырья // Моделирование развития Западно-Сибирского нефтегазового комплекса. — Новосибирск: Наука. Сиб. отд-е, 1982. — С. 62-76.

УДК 314.3(470.1/.2+571) JEL J13

У.В. Лыткина

Институт языка, литературы и истории ФИЦ Коми НЦ УрО РАН Сыктывкар, Россия

Пространственный анализ рождаемости на Севере России¹

Аннотация

Рассматриваются пространственные закономерности рождаемости в 294 муниципальных образованиях Севера России. Методом косвенной стандартизации рассчитан коэффициент суммарной рождаемости на муниципальном уровне. Показано, что за 2015-2023 годы существенно снизился медианный уровень рождаемости территорий Севера России. Корре-

¹ Исследование выполнено за счет гранта Российского научного фонда, проект № 24-78-10061.