ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭКОНОМИКИ И ОРГАНИЗАЦИИ ПРОМЫШЛЕННОГО ПРОИЗВОДСТВА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

АКТУАЛЬНЫЕ ВОПРОСЫ ЭКОНОМИКИ И СОЦИОЛОГИИ

Сборник статей по материалам XXI Осенней конференции молодых ученых в новосибирском Академгородке

Под редакцией к.э.н. Ю.М. Слепенковой

Новосибирск 2025 на международный рынок нефти. Однако важно отметить, что коэффициент при добавленном показателе среднего времени связи значим и приводит к росту псевдо \mathbb{R}^2 .

Таким образом теория графов может быть использована как самостоятельный инструмент для анализа международного рынка нефти, так и в качестве вспомогательного средства в кластерном, эконометрическом и других видах анализа. В данном исследовании теория графов применялась как средство визуализации торговой сети и для анализа динамики структурных изменений на рынке нефти. Также на основе полученных графов составлена база показателей для включения в эконометрический анализ. Использование комплексных подходов с учетом нескольких методов позволяет повысить качество оценки.

ЛИТЕРАТУРА

Медведева Т. А. Алгоритмы теории графов в модели международной торговли // Advanced Engineering Research (Rostov-on-Don). $-2010. - T. 10. - N_{\odot}$. 6. -C. 838-843.

Daud N. N. et al. Applications of link prediction in social networks: A review // Journal of Network and Computer Applications. – 2020. – T. 166. – C. 102716.

Gong Y. et al. Spatial correlation network pattern and evolution mechanism of natural gas consumption in China—Complex network-based ERGM model // Energy. – 2023. – T. 285. – C. 129400.

Hu J. et al. An analysis of the global fuel-trading market based on the visibility graph approach // Chaos, Solitons & Fractals. – 2022. – T. 154. – C. 111613.

Yin L., Ma X. Causality between oil shocks and exchange rate: a Bayesian, graph-based VAR approach // Physica A: Statistical Mechanics and its Applications. – 2018. – T. 508. – C. 434-453.

УДК: 332.15 JEL R11

Ю.В. Панкова

Институт экономики и организации промышленного производства СО РАН, Новосибирский национальный исследовательский государственный университет Новосибирск, Россия

Перспективы развития водородной промышленности в Республике Саха (Якутия)

Аннотаиия

Приведено краткое обоснование проблемы долгосрочного устойчивого развития экономики Республики Саха (Якутия) и роста ее значимости в связи с энергетическим переходом. В этом контексте отмечены возможности региона по развитию производства водорода и осуществлен обзор существующих инвестиционных проектов. Выполнена оценка приведенной стоимости «зеленого» и «розового» водорода в Республике Саха (Якутия). Выделены риски реализации инвестиционных проектов в области водородной промышленности в Республике Саха (Якутия), а также определены перспективные варианты развития производства водорода с позиции указанных рисков и проблемы устойчивости экономики региона.

Ключевые слова: устойчивое развитие, водород, энергетический переход, Республика Саха (Якутия)

¹ Работа подготовлена по плану НИР ИЭОПП СО РАН, проект 5.6.6.4 (0260-2021-0007) «Инструменты, технологии и результаты анализа, моделирования и прогнозирования пространственного развития социальноэкономической системы России и её отдельных территорий», № 121040100262-7.

Yu.V. Pankova

Institute of Economics and Industrial Engineering SB RAS, Novosibirsk National Research State University Novosibirsk, Russia

Prospects for the Development of the Hydrogen Industry in the Republic of Sakha (Yakutia)

Abstract

The article provides a brief justification of the problem of long-term sustainable development of the economy of the Republic of Sakha (Yakutia) and its growing importance in connection with the energy transition. In this context, the region's opportunities for developing hydrogen production are highlighted and an overview of existing investment projects is carried out. The levelized cost of "green" and "pink" hydrogen in the Republic of Sakha (Yakutia) is estimated. The risks of implementing investment projects in the field of the hydrogen industry in the Republic of Sakha (Yakutia) are highlighted, and promising options for the development of hydrogen production are identified from the perspective of these risks and the sustainability of the region's economy.

Keywords: sustainable development, hydrogen, energy transition, Republic of Sakha (Yakutia)

Неблагоприятные природно-климатические условия, экономико-географическое положение, слабая освоенность пространства, низкий уровень развития инфраструктуры и другие особенности Республики Саха (Якутия) как и иных северных регионов ресурсного типа России затрудняют трансформацию их экспортно-сырьевой модели развития посредством исключительно рыночных механизмов. В условиях сложности формирования под действием только рыночных сил конкуренции инновационных и высокотехнологичных производств и новой специализации региона сохраняется зависимость ее экономики от ресурсного сектора и низкая локализация несырьевого производства, препятствующая генерации для территории социально-экономических эффектов от инвестиционного и экспортного спроса. В то же время для добывающего сектора Республики Саха (Якутия) свойственно изменение состава и характеристик извлекаемых природных ресурсов и их источников (увеличение доли трудноизвлекаемых запасов в добыче и др. (например [Филимонова и др., 2019])), что в совокупности с повышением наукоемкости процесса добычи приводит к росту издержек и снижению экономической привлекательности объектов, вовлекаемых в освоение. Указанные тенденции вместе с усилением геополитического давления (введение санкций в т.ч. прямо или косвенно влияющих на добывающий сектор региона) и изменением мировой конъюнктуры создают в долгосрочной перспективе риски для устойчивого развития экономики Республики Саха (Якутия).

Нами показано, что дополнительные вывозы для северных регионов ресурсного типа и в частности Республики Саха (Якутия) создает текущий энергетический переход, в том числе связанный со снижением доли ископаемого топлива (угля, нефти, природного газа) в энергопотреблении при росте доли низкоуглеродных и безуглеродных источников энергии (возобновляемых, атомной энергии, водорода). Такой долгосрочный структурный сдвиг в мировой энергетической системе явным образом создает риски для текущей модели развития Республики Саха (Якутия), в структуре валового региональной продукта которой добыча полезных ископаемых в 2023 г. составляла около 58%, и для выполнения цели «Стратегии социально-экономического развития Республики Саха (Якутия) до 2032 года с целевым видением до 2050 года» по обеспечению глобальной конкурентоспособности добывающей отрасли региона посредством реализации инвестиционных проектов по освоению месторождений и увеличению мощностей.

Однако помимо угроз, связанных с возможным снижением ресурсного экспорта и инвестиций в соответствующие проекты, с обострением конкуренции на энергетических рынках и их волатильностью, со сложностями с доступом к необходимым технологическим ре-

шениям и др., энергетический переход создает также для Республики Саха (Якутия) и возможности. Так, одной из них является развитие на территории региона водородной промышленности, что может способствовать достижению минимально необходимых условий для обеспечения устойчивости экономики Республики Саха (Якутия) по концепции Э. Барбье [Barbier, 2005] за счет увеличения внутри региона добавленной стоимости, создаваемой посредством извлечения сырья, и перехода к более диверсифицированной структуре экономики. Причем, согласно нашей оценке, мультипликатор валового выпуска в обрабатывающей промышленности, к которой относятся химические производства (и в том числе производство водорода и получаемых с его использованием продуктов), возрастает наиболее сильно в сравнении с мультипликаторами других отраслей региона при переключении спроса с ввозимой продукции на местную. Иными словами, с позиции увеличения внутри региона мультипликативных эффектов наиболее результативной является политика стимулирования предложения в виде поддержки создания новых и расширения действующих производств на территории Республики Саха (Якутия) именно в обрабатывающей промышленности.

В этом контексте рассмотрены существующие инвестиционные проекты в области водородной промышленности в Республике Саха (Якутия). В частности,

- проект ОО НПО «Северо-Восточный альянс» по производству энергоносителей (водорода и/или аммиака) из природного газа с применением технологии улавливания диоксида углерода;
- «Алданский газовый кластер» промышленный кластер по малотоннажному производству азотных соединений (водород, аммиак, аммиачная селитра), сжиженного природного газа и перевалке аммиака;
- Кючусский кластер месторождений твердых полезных ископаемых промышленный кластер, представляющий собой интегрированный проект безуглеродного горнодобывающего предприятия с производством водорода, аммиака, аммиачной селитры.

Все приведенные проекты на текущий момент времени находятся на ранних стадиях — (предварительного) технико-экономического обоснования, - и ориентированы на производство «голубого» водорода, то есть произведенного из природного газа (метана) с применением технологии улавливания и хранения углерода, или «розового» водорода, то есть полученного из воды электролизом с использовании энергии атомных станций малой мощности. Такой водород по оценкам (например [Hydrogen..., 2022]) может давать большие совокупные выбросы парниковых газов в сравнении с «зеленым» водородом, то есть произведенным посредством электролиза воды с использованием возобновляемых источников энергии, но в то же время выигрывать с точки зрения ценовой конкуренции (например [Hydrogen..., 2022; Power..., 2021; Younas et al., 2022]). В связи с этим отдельно рассмотрен вопрос конкурентоспособности по цене водорода, произведенного в Республике Саха (Якутия), для чего выполнена оценка приведенной стоимости «зеленого» и «розового» водорода с учетом текущей средней цены приобретения электроэнергии промышленными предприятиями в регионе. Полученная стоимость -7 и 5,7 долл. США/ кг H_2 соответственно — находится на уровне международных оценок в сегменте «безуглеродного» водорода [Global..., 2024], но существенно выше приведенной стоимости «голубого» водорода, с которым возможна конкуренция при дополнительном регулировании.

На основе анализа приведенного перечня инвестиционных проектов определены ключевые риски развития водородной промышленности Республики Саха (Якутия). К ним относятся рыночные и ценовые риски. А именно, высокая неопределенность спроса на экспортных рынках с учетом возможных санкций и высокой конкуренции при ориентации поставок на страны Азиатско-Тихоокеанского региона; возможное снижение премии за низкоуглеродность водорода (при осуществлении поставок через страны-посредники и в иных сценариях) вплоть до ее нивелирования; продуктовая и ценовая конкуренция с «зеленым» водородом. Среди технологических и инфраструктурных рисков выделены ограничение доступа к критическим импортным технологиям при отсутствии конкурентных внутренних альтернатив и высокие транспортные и/или временные издержки для поставок на внешние рынки. Кроме

того, имеют место и общеэкономические риски (изменение процентных ставок, валютного курса и пр.).

В качестве наиболее перспективных вариантов в этом контексте выделены малотоннажное производство водорода в рамках кластера посредством электролиза с поставками на внутренний рынок и крупнотоннажное производство аммиака посредством риформинга природного газа с применением технологий улавливания и хранения углерода с поставками на внешний рынок. При этом наиболее предпочтительным с позиции устойчивости экономики Республики Саха (Якутия) является второй из обозначенных вариантов.

ЛИТЕРАТУРА

Филимонова И.В., Моисеев С.А., Немов В.Ю., Проворная И.В. Нефть и газ Якутии: перспективы и ограничения // Нефтегазовая вертикаль. -2019. -№ 20-21 (464). - C. 32-42.

Barbier E.B. Natural Resources and Economic Development. – Cambridge University Press, $2005.-410~\mathrm{p}.$

Global Hydrogen Review 2024. – International Energy Agency, 2024. – 293 p.

Hydrogen forecast to 2050 – Energy transition outlook 2022. – DNV, 2022. - 114 p.

Power to Fuel. How to Speed Up a Hydrogen Economy – G. Spazzafumo. 2021. – 271 p.

Younas et al. An Overview of Hydrogen Production: Current Status, Potential, and Challenges // Fuel. – 2022. – Vol. 316. – 123317.

УДК: 338.24; 330.4

JEL C68

П.О. Перетятько

Восточный центр государственного планирования Москва, Россия

CGE-моделирование региональной политики в Дальневосточном федеральном округе

Аннотация

Многообразие применяемых на Дальнем Востоке мер региональной политики требует экономико-математического аппарата, позволяющего оценивать эффекты действующих и вводимых мероприятий с точки зрения выгод и потерь различных агентов, а также с учетом межотраслевых эффектов. В рамках выполнения данной цели построена СGЕ-модель Дальневосточного федерального округа. Модель апробирована с помощью расчета последствий изменения налоговых ставок. Оценены различные сценарии перераспределения бюджетных средств.

Ключевые слова: СGЕ-модели, Дальний Восток, налоговая политика.

P.O. Peretyatko

Federal Autonomous Scientific Institution «Eastern State Planning Center» Moscow, Russia

CGE-modeling of regional policy in the Far Eastern Federal District

Abstract

The diversity of regional policy measures in the Russian Far East requires an economic and mathematical apparatus that allows assessment of the effects of current and new policies from the