Данный файл является фрагментом электронной копии издания, опубликованного со следующими выходными данными:

ББК 65.9(2Р)-1 УДК 338.9 П 828

П 828

Пространственное развитие современной России: тенденции, факторы, механизмы, институты / под ред. Е.А. Коломак. — Новосибирск: Изд-во ИЭОПП СО РАН. 2020. — 502 с.

ISBN 978-5-89665-352-3

Работа посвящена изучению пространственных аспектов и проблем развития России в период после начала рыночных реформ, актуальность работы связана с особым значением вопросов развития территорий, межрегионального неравенства и географической связности в политике страны. В монографии даются оценки изменений территориальных пропорций, рассматриваются разные географические единицы (макро-регионы, субъекты Федерации, города, муниципальные районы) и разные аспекты пространственных процессов. Авторы анализируют государственную пространственную политику и высказывают рекомендации об эффективных инструментах и механизмах.

Монография может быть полезной для научных сотрудников, практиков и студентов экономических специальностей, чьи интересы связаны с вопросами пространственного развития и региональной политики.

ISBN 978-5-89665-352-3

ББК 65.9(2Р)-1 УДК 338.9 П 828

© ИЭОПП СО РАН, 2020 г.

© Коллектив авторов, 2020 г.

Вместе с тем из нашего анализа следует, что отрасли специализации, выбираемые для государственной поддержки в удаленных регионах, должны отвечать таким критериям, как невысокая транспортоёмкость и возможность получать внешнюю отдачу от масштаба. Развитие таких отраслей страхует регион от роста транспортной составляющей в структуре затрат. Также повышается вероятность появления многоотраслевых кластеров, а следовательно, устойчивость региона к воздействию внешних шоков. Что касается мер по стимулированию спроса, то повышение доходов бедных слоев населения, доля которых, как правило, высока в удаленных малых регионах, приводит к росту, в первую очередь, потребительского спроса. Поэтому мультипликативный эффект такой политики ограничен скудостью отраслевой структуры местной экономики и будет удовлетворяться, большей частью, поставками извне.

Наконец, в региональной политике часто рекомендуется развитие «человеческого капитала», т.е. повышение уровня образованности работников, стимуляция стартапов, поощрение распространения знаний и навыков. Именно в сфере накопления информации и распространения инноваций «тирания расстояния» стремительно ослабевает благодаря новым технологиям, что дает наибольший относительный эффект в удаленных регионах. С другой стороны, в защищенных расстоянием регионах важны местные особенности, формирующие уникальный социальный капитал территории, сохранение и культивирование которого способствует раскрытию потенциала региона и сокращению экономической «дистанции» между ним и регионами-лидерами.

5.4. СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ РЕСПУБЛИКИ ТЫВА: ПРОГНОЗ НА ОСНОВЕ ИНТЕРВАЛЬНОЙ МЕЖОТРАСЛЕВОЙ МОДЕЛИ*

Переход России на стратегию восстановительного роста в условиях нестабильности, пространственных диспропорций и отсутствия самостоятельности регионов в принятии важных экономических решений актуализировал значимость регионального стратегирования на основе моделей, позволяющих строить оптимальный вектор социально-экономического развития. Наиболее эффективно с такой задачей позволяет справиться инструментарий на основе межотраслевых моделей. Межотраслевые модели позволяют рассматривать экономику региона как единый комплекс, в котором макроэкономические связи формируются под воздействием связей, сложившимся между различными видами деятельности, текущего уровня затрат, фактической структуры конечного потребления¹.

На практике применение подобных моделей сопровождается рядом трудностей, главной из которых является наиболее точное определение значений коэффициентов прямых производственных затрат. Неопределенность параметров в модели межотраслевого баланса может иметь существенное влияние на оценку валового национального продукта (или валового регионального продукта – на уровне региона).

Проблема математического описания неопределенности коэффициентов прямых производственных затрат наиболее остро встает на региональном уровне, поскольку аналитики вынуждены работать в условиях недостатка и неточности статистической

^{*} Материал подготовлен в рамках проекта НИР ИЭОПП СО РАН АААА-А17-117022250123-0.

 $^{^{1}}$ **Широв А.А.** Многоуровневые исследования и долгосрочная стратегия развития экономики: монография / Институт народнохозяйственного планирования РАН. – М.: МАКС Пресс, 2015. – 264 с. **230**

информации. Вместо точных значений коэффициентов оперируют их оценками, полученными путем экспертной корректировки национальных таблиц к региональному виду. Ввиду этого справедливо считать, что коэффициенты прямых производственных затрат многорегиональной межотраслевой модели подвержены большей степени неопределенности, чем на национальном уровне.

5.4.1. Интервальная модель межотраслевого баланса: история развития и математическое описание

В математической экономике часто возникают задачи с неточными исходными данными. Для описания неопределенности в исходных данных экономико-математических моделей используют вероятностно-статистические методы, нечетко-случайные методы и интервальные методы¹.

Предлагается использование интервалов для описания значений коэффициентов прямых производственных затрат в классической модели межотраслевого баланса В.В. Леонтьева. Интервальные балансовые модели «затраты-выпуск» являются предметом разносторонних исследований уже более сорока лет.

Впервые идея использования интервального анализа в экономике была представлена И. Роном в 1974 г. на примере экономики социалистической Чехословакии². И. Рон вывел условия, при которых система уравнений «затраты-выпуск» будет иметь экономически выполнимые решения, когда коэффициенты прямых производственных затрат являются интервалами. В работах Г. Лоренцена и К. Мааса, М. Джеррелла также рассматриваются различные постановки задач в модели «затраты-выпуск» с интервальными данными³.

В ходе нашей работы мы развиваем методики применение интервальных вычислений в межотраслевых моделях.

В 1992 г. задача оценивания допускового множества решений линейных алгебраических уравнений для интервальной модели межотраслевого баланса Красноярского края была решена С.П. Шарым и Е.Б. Бухаровой⁴.

В 2017 г. Е.А. Воронцовой были решены задачи оценки перспектив развития региональной экономики на примере Приморского края с использованием интервальной модели межотраслевого баланса 5 .

В качестве базовой математической модели принимаем линейное уравнение В.В. Леонтьева вида:

$$x = Ax + b$$
 (1)

¹ **Воронцова Е.А.** Линейная задача о допусках для интервальной модели межотраслевого баланса // Вычислительные Технологии. – 2017. – Т. 22, № 2. – С. 67–84 [с. 67].

² **Rohn J.** Input-output planning with inexact data // Freiburger Intervall-Berichte. – 1978. – No. 9/78. – S. 1–16.

³ **Lorenzen G., Maas Ch.** On input-output analysis with interval data // Jahrbücher für Nationalökonomie und Statistik. – 1989. – Bd. 206, No. 3. – S. 251–263; Jerrell M. Applications of interval computations to regional economic input-output models // Applications of Interval Computations / Kearfott R.B. and Kreinovich V., eds. – Dordrecht: Kluwer, 1996. – P. 133–143.

⁴ **Шарый С.П.** Решение внешней и внутренней задач для интервальной системы линейных алгебраических уравнений. Автореф. дис. ... канд. физ.-матем. наук. – Вычислительный Центр СО РАН в г. Красноярске: – Красноярск, 1992. – 212 с.

⁵ **Воронцова Е.А.** Линейная задача о допусках для интервальной модели межотраслевого баланса // Вычислительные Технологии. – 2017. – Т. 22, № 2. – С. 67–84.

где x-n-вектор объёмов производства по n отраслям; b-n-вектор конечного потребления по этим отраслям, $A=(a_{ij})-$ матрица коэффициентов прямых производственных затрат.

В интервальном случае вместо системы (1) мы имеем интервальную систему линейных уравнений:

x=Ax+b, 1

что эквивалентно

$$(I-A)x=b, (2)$$

где I — единичная матрица; A= (a_{ij}) — интервальная матрица прямых производственных затрат; b — интервальный вектор конечного потребления. Здесь важно отметить, что все значения внутри интервалов предполагаются равновозможными.

В связи с системой (2) возникают несколько различных постановок задач, обобщающих задачу решения системы (1).

Прежде всего интересен вопрос о «крупномасштабной чувствительности» модели (1) при изменении её параметров. Иными словами, насколько могут изменяться объёмы производства x по отраслям при изменении коэффициентов прямых производственных затрат a_{ij} и значений конечного потребления b_i в пределах назначенных им интервалов a_{ij} и b_i ?

В интервальном анализе задача такого типа называется задачей о внешнем интервальном оценивании так называемого объединённого множества решений для интервальной системы линейных алгебраических уравнений.

С другой стороны, если целевым назначением нашего планирования является достижение заданного уровня потребления ${\bf b}$ то возникает другая постановка задачи. А именно, при каких объёмах производства x для любых значений коэффициентов прямых производственных затрат a_{ij} в пределах ${\bf a_{ij}}$ мы всё равно получаем значение конечного потребления из требуемого интервала ${\bf b}$?

Множество всех векторов x удовлетворяющих сформулированному выше условию, образует так называемое допусковое множество решений интервальной системы линейных алгебраических уравнений (внутренняя оценка).

Допусковое множество решений интервальной системы линейных алгебраических уравнений может оказаться пустым, если интервалы в матрице $\bf A$ слишком широки в сравнении с интервальным вектором правой части $\bf b$. Если же допусковое множество решений непусто, то, как правило, возникает необходимость его приближённого оценивания с помощью каких-то просто описываемых подмножеств.

Для исследования пустоты/непустоты допускового множества решений интервальной системы линейных уравнений для интервальной модели межотраслевого баланса нами использован метод распознающего функционала С.П. Шарого².

 $^{^1}$ Здесь и далее интервальные величины выделяются полужирным шрифтом, что соответствует международному стандарту обозначений в интервальном анализе.

² **Шарый С.П.** Решение интервальной линейной задачи о допусках // Автоматика и Телемеханика. – 2004. – № 10. – С. 147–162; **Шарый С.П.** Решение внешней и внутренней задач для интервальной системы линейных алгебраических уравнений. Автореф. дис. канд. физ.-матем. наук. – Вычислительный Центр СО РАН в г. Красноярске. – Красноярск, 1992. – 212 с. **232**

5.4.2. Решение линейной задачи о допусках для интервальной модели межотраслевого баланса Республики Тыва

Апробацию данного подхода проведем с помощью решения задачи прогнозирования оптимального отраслевого выпуска на период 2020–2035 гг. для интервальной модели межотраслевого баланса Республики Тыва. В качестве исходных данных берем матрицу коэффициентов прямых производственных затрат межотраслевого баланса Республики Тыва в разрезе 53 отраслей. Данная матрица была разработана в Институте экономики и организации промышленного производства СО РАН как часть межрегионального инструментария «Платежи-доходы», в которой отдельно выделена Республика Тыва¹.

Матрица коэффициентов прямых производственных затрат межотраслевого баланса Республики Тыва $A=(a_{ij})\in \mathbb{R}^{n\times n}$ была преобразована в интервальную матрицу $A=(a_{ij})$ со степенью неопределенности 1%. Это позволит в некоторой степени «ослабить» достаточно сильное допущение о том, что технологические коэффициенты остаются неизменными на протяжении всего прогнозируемого периода.

Значения вектора конечного потребления b_i также были представлены в виде интервала, путем расширения допустимого «коридора» конечного потребления b_i на 10%.

Таким образом, постановка решаемой задачи звучит следующим образом: найти оптимальный план производства x_i в 2020–2035 гг., для которых при любых значениях коэффициентов прямых производственных затрат a_{ij} в пределах a_{ij} значение конечного потребления остается в пределах требуемого интервала b.

В таблице 5.6 представлены исходные данные: объемы производства x_i и конечного потребления b_i по 53 отраслям за 2015 г.

 Таблица 5.6

 Объемы производства и конечного потребления по отраслям экономики Республики Тыва на 2015 г., млрд руб.

№ п/п	Отрасли	Конечное потребление, b_i	Объем выпуска, x_i
1	2	3	4
1	Растениеводство	0,8838	1,3993
2	Лесное хозяйство, охота	0,0163	0,1076
3	Рыболовство, рыбоводство	0,0570	0,1387
4	Добыча угля	0,0139	0,4302
5	Добыча нефти	0,1007	1,3964
6	Добыча газа	0,0081	0,2155
7	Добыча железных руд	0,0039	0,1204
8	Добыча цветных руд, урана и ториевой руды	0,0035	0,1520
9	Добыча прочих ископаемых	0,0025	0,0673
10	Производство пищевых продуктов, включая напитки и табак	4,0363	4,2393
11	Текстильное и швейное производство	1,1858	1,4985

 $^{^1}$ **Мелентьев Б.В., Ершов Ю.С., Алимпиева А.А**. Методические рекомендации построения межрегионального межотраслевого финансового баланса "Платежи-доходы" / ИЭОПП СО РАН. — Новосибирск, 2010.-144 с.

Глава 5. ПРОБЛЕМЫ РАЗВИТИЯ ОТДЕЛЬНЫХ ТЕРРИТОРИЙ

TT \	_	_	_
Продолжение	manniiii	L1 7	n
110000000000000000000000000000000000000	maoman	ກ ວ.	$\mathbf{\sigma}$

		11poodiioice	е таолицы 5.0
1	2	3	4
12	Обработка древесины и производство изделий из дерева	0,0798	0,1988
13	Целлюлозно-бумажное производство	0,0994	0,4423
14	Издательская и полиграфическая деятельность	0,1354	0,3208
15	Кокс	0,0000	0,0367
16	Нефтепродукты	0,3791	2,5704
17	Химическое производство (без резины, пластмассы)	0,3665	1,4420
18	Неметаллические минеральные продукты (без цемента, бетона)	0,0508	0,1358
19	Черные металлы	0,0371	0,9311
20	Цветные металлы	0,0499	0,8698
21	Готовые металлические изделия	0,0162	0,1912
22	Машиностроение	2,2823	3,8650
23	Прочие обрабатывающие производства	0,2183	1,4787
24	Электроэнергия	1,1387	3,4528
25	Теплоэнергия	0,5248	1,0750
26	Газообразное топливо	0,0795	0,1198
27	Вода	0,2143	0,3843
28	Строительство	0,1442	0,3612
29	Оптовая и розничная торговля, авторемонт	8,7133	10,2446
30	Гостиницы, рестораны	1,5480	1,6893
31	Железнодорожный транспорт	0,0000	0,0000
32	Трубопроводный транспорт	0,0000	0,0000
33	Авто, прочий транспорт	0,6869	0,8950
34	Связь	1,6088	2,1327
35	Финансовая деятельность	1,1088	2,0518
36	ОНИ аренда услуги	2,3386	5,4958
37	Государственное управление, обязательное социальное обеспечение	9,9030	10,0678
38	Образование	0,3791	0,4140
39	Здравоохранение, социальные услуги	4,4198	4,4708
40	Прочие услуги	0,8526	1,2383
41	Животноводство	1,2927	1,9620
42	Производство одежды, выделка и крашение меха	0,5207	0,5924
43	Производство кожи, изделий из кожи и обуви	0,2219	0,2276
44	Мясомолочное производство	1,1502	1,2223
45	Мукомольное производство, крупяное производство, производство крахмала	0,5609	0,5764
46	Прочее химическое производство (синтетический каучук и синтетические смолы, пластмасса)	0,0874	0,3568
47	Производство резиновых и пластмассовых изделий	0,1139	0,3412
48	Промышленность стройматериалов, стекольная и фарфорофаянсовая промышленность	0,0675	0,1834

Окончание таблицы 5.6

1	2	3	4
49	Внутренний водный + лесосплав (транспорт)	0,0000	0,0000
50	Морской транспорт	0,0000	0,0000
51	Авиационный транспорт	0,5489	0,5507
52	Погрузочно-разгрузочные работы и транспортно-экспедиционные работы	0,2729	0,2730
53	Прочие виды транспорта	0,1754	0,2318
	Всего	49,1372	73,2960

Источник: расчёты автора; Республика Тыва в цифрах 2016: Стат. сб. / Красноярскстат. – Кызыл, 2017. – 99 с.

Расчеты проведены с использованием программы исследования разрешимости интервальной линейной задачи о допусках $TOLSOLVTY^1$ С.П. Шарого в программе $Scilab-6.0.0^2$.

Программа TOLSOLVTY выдаёт заключение о разрешимости задачи о допусках для интервальной системы линейных уравнений (I-A)x=b. Другими словами, программа позволяет определить пустоту/непустоту допускового множества решений интервальной системы линейных уравнений для интервальной модели межотраслевого баланса.

Кроме того, процедура выдаёт следующие показатели:

- tolmax значение максимума распознающего функционала (индикатор разрешимости функционала, характеризующий степень устойчивости полученного решения);
- argmax доставляющий максимум распознающего функционала вектор аргументов (оптимальный план выпуска в отраслевом разрезе);
- -envs значения образующих распознающего функционала в точке его максимума (степень дефицитности отраслей, отсортированные по возрастанию).

Первым параметром, который выдает задача, является показатель Tolmax — значение максимума распознающего функционала. Результаты решения линейной задачи о допусках (ЛЗД) для интервальной модели межотраслевого баланса Республики Тыва по данному параметру представлены в таблице 5.7.

Таблица 5.7 Разрешимость линейной задачи о допусках для интервальной модели межотраслевого баланса Республики Тыва

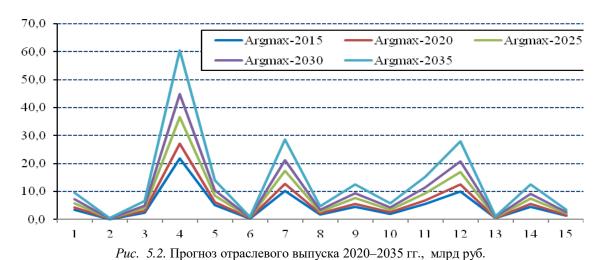
Год	Интервал неопределенности матрицы $A=(a_{ij}), \%$	Коридор потребления для вектора \pmb{b}_i		Разрешимость	Значение	
		Нижняя граница, /%	Верхняя граница, %	ЛЗД, +/-	Tolmax	
2020	1	-10	+10	_	-0,00654	
2025	1	-10	+10	_	-0,00883	
2030	1	-10	+10	_	-0,01081	
2035	1	-10	+10	_	-0,01455	

Источник: Республика Тыва в цифрах 2016: Стат.сб. / Красноярскстат. – Кызыл, 2017. – 99 с.; расчёты автора.

 1 Программа в свободном доступе выложена на сайте ИВТ CO PAH: http://www.nsc.ru/interval/Programing/SciCodes/tolsolvty.sci

 2 Пакет прикладных математических программ, предоставляющий открытое окружение для инженерных и научных расчётов. Это самая полная общедоступная альтернатива MATLAB.

Значение Tolmax показывает значение максимума распознающего функционала, если система интервальных линейных уравнений имеет решение (Tolmax \geq 0), другими словами, это некоторая мера степени устойчивости полученного решения.


Но во всех рассмотренных нами случаях (при степени неопределенности матрицы в 1% и расширению «коридора» конечного потребления на 10%) линейная задача о допусках для интервальной системы уравнений оказалась неразрешимой, т. е. формально данная система не имеет решений. Данный факт наблюдается при недостаточно широком интервале вектора конечного потребления b_i по сравнению с интервальной матрицей $A=(a_i)$.

Вторым расчетным параметром является значение *Argmax* – доставляющий максимум распознающего функционала вектор аргументов (оптимальный план выпуска в отраслевом разрезе для прогнозируемых пятилеток). Результаты решения линейной задачи о допусках (ЛЗД) для интервальной модели межотраслевого баланса Республики Тыва по данному параметру были агрегированы в 15 отраслей согласно ОКВЭД (таблица 5.8, рисунок 5.2).

Таблица 5.8 Оптимальный план производства по 15 отраслям для интервальной модели межотраслевого баланса Республики Тыва, млрд руб.

Всего	91,6233	123,8266	151,5704	203,9484
15. Предоставление прочих услуг	1,5479	2,0921	2,5608	3,4457
14. Здравоохранение и предоставление социальных услуг	5,5887	7,5529	9,2452	12,4401
13. Образование	0,5175	0,6993	0,85603	1,1518
12. Государственное управление и обеспечение военной безопасности, обязательное социальное обеспечение	12,5853	17,00866	20,8195	28,0141
11. Операции с недвижимым имуществом, аренда и предоставление услуг	6,8699	9,284428	11,3646	15,2920
10. Финансовая деятельность	2,5648	3,466349	4,243	5,7091
9. Транспорт и связь	5,6512	7,63745	9,3487	12,5793
8. Гостиницы и рестораны	2,1116	2,853843	3,4932	4,7003
7. Оптовая и розничная торговля, ремонт автотранспортных средств, мотоциклов, бытовых изделий, предметов личного пользования	12,8061	17,30716	21,1849	28,5058
6. Строительство	0,4514	0,610044	0,7467	1,0048
5. Производство и распределение электроэнергии, газа и воды	6,2903	8,501185	10,4057	14,0018
4. Обрабатывающие производства	27,1511	36,69423	44,9155	60,4370
3. Добыча полезных ископаемых	2,9774	4,02405	4,9256	6,6277
2. Рыболовство, рыбоводство	0,1733	0,234351	0,2868	0,3859747
1. Сельское хозяйство, охота и лесное хозяйство	4,3363	5,8605	7,1735	9,6523
Агрегированные отрасли (15 из 53)	2020	2025	2030	2035

Источник: расчёта автора.

Источник: расчёты автора.

Анализ результатов расчетов показал, что с увеличением границ неопределенности матрицы материальных затрат при одних и тех же нижних границах вектора конечного потребления b_i возрастает объем производства по всем отраслям.

Отметим, что полученный план производства является не единственно возможными, поскольку изначально мы задавали интервалы для коэффициентов прямых производственных затрат и для вектора конечного потребления. При этом данные значения являются наиболее устойчивыми при заданных условиях.

Наибольшие темпы роста в 2030 г. по отношению к 2015 г. наблюдаются по важнейшим отраслям экономики республики: 4-я отрасль (обрабатывающие производства) и 5-я (производство и распределение электроэнергии, газа и воды) – составляют 271,7 и 260,8% соответственно.

Наименьшие темпы роста в отрасли 12-й (государственное управление и обеспечение военной безопасности, обязательное социальное обеспечение) и 13-й (образование) – $231,1\,$ и 232,7% соответственно.

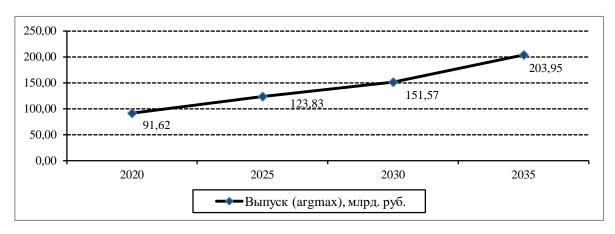


Рис. 5.3. Прогноз объема выпуска 2020–2035 гг., млрд руб.

Источник: расчёты автора.

На рисунке 5.3 представлен прогноз суммарного объема выпуска по всем отраслям до 2035 г.

Темпы роста объемов производства по всем отраслям в период 2015–2020 гг. составили 148,3% и превысили заданные темпы роста конечного потребления – 125,5%.

В последующий десятилетний период 2020–2030 гг. этот показатель составил 175,1%, что меньше заданных темпов роста конечного потребления — 235% в результате снижения темпов роста по 12-й и 13-й отраслям.

И наконец, третьим параметром, который рассчитывается в программе исследования разрешимости интервальной линейной задачи о допусках, являются значения Envs — значения образующих распознающего функционала в точке его максимума, этот показатель характеризует степень дефицитности отраслей, отсортированных по возрастанию.

По данному показателю наиболее устойчивыми являются две отрасли: 37 «Государственное управление и обеспечение военной безопасности, обязательное социальное обеспечение» и 29 «Оптовая и розничная торговля, ремонт автотранспортных средств».

Две отрасли имеют среднюю степень устойчивости: 10 «Пищевые консервы, табачные продукты» и 39 «Здравоохранение и предоставление социальных услуг».

Отрасли с наибольшим дефицитом – 7 «Добыча железных руд» и 23 «Прочие обрабатывающие производства».

* * *

Таким образом, результаты решения линейной задачи о допусках для интервальной модели межотраслевого баланса Республики Тыва показали достоинства метода распознающего функционала множества решений С.П. Шарого, который позволяет учесть неопределенность экономических параметров, проигрывать альтернативные варианты неопределенности прямых производственных затрат и прогноза конечного потребления.

Данный инструментарий может успешно использоваться в диалоге бизнеса и государства, для обоснования значимости тех или иных секторов экономики, необходимости изменения государственной инвестиционной политики, политики в области налогообложения бизнеса и т.д.